Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors
نویسندگان
چکیده
منابع مشابه
Cell Cycle Control and Bifurcation for a Free Boundary Problem Modeling Tissue Growth
We consider a free boundary problem for a system of partial differential equations, which arise in a model of cell cycle. For the quasi steady state system, it depends on a positive parameter β, which describes the signals from the microenvironment. Upon discretizing this model, we obtain a family of polynomial systems parameterized by β. We numerically find that there exists a radially-symmetr...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملRelaxation of surface tension in the free-surface boundary layer of simple Lennard-Jones liquids.
In this paper we use molecular dynamics to answer a classical question: how does the surface tension on a liquid/gas interface appear? After defining surface tension from the first principles and performing several consistency checks, we perform a dynamic experiment with a single simple liquid nanodroplet. At time zero, we remove all molecules of the interfacial layer, creating a fresh bare int...
متن کاملAsymptotic Stability of Stationary Solutions of a Free Boundary Problem Modeling the Growth of Tumors with Fluid Tissues
This paper aims at proving asymptotic stability of the radial stationary solution of a free boundary problem modeling the growth of nonnecrotic tumors with fluid-like tissues. In a previous paper we considered the case where the nutrient concentration σ satisfies the stationary diffusion equation ∆σ = f(σ), and proved that there exists a threshold value γ∗ > 0 for the surface tension coefficien...
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.03.107